Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38543822

RESUMO

Since the foot-and-mouth disease (FMD) outbreak in South Korea in 2010-2011, vaccination policies utilizing inactivated FMD vaccines composed of types O and A have been implemented nationwide. However, because type Asia1 occurred in North Korea in 2007 and intermittently in neighboring countries, the risk of type Asia1 introduction cannot be ruled out. This study evaluated the antigen yield and viral inactivation kinetics of the recombinant Asia1 Shamir vaccine strain (Asia1 Shamir-R). When Asia1 Shamir-R was proliferated in shaking flasks (1 L), a 2 L bioreactor (1 L), and a wave bioreactor (25 L), the antigen yields were 7.5 µg/mL, 5.2 µg/mL, and 3.8 µg/mL, respectively. The optimal FMDV inactivation conditions were 2 mM BEI at 26 °C and 1.0 mM BEI at 37 °C. There was no antigen loss due to BEI treatment, and only a decrease in antigen levels was observed during storage. The sera from pigs immunized with antigen derived from a bioreactor exhibited a neutralizing antibody titer of approximately 1/1000 against Asia1 Shamir and Asia1/MOG/05 viruses; therefore, Asia1 Shamir-R is expected to provide sufficient protection against both viruses. If an FMD vaccine production facility is established, this Asia1 Shamir-R can be employed for domestic antigen banks in South Korea.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Suínos , Inativação de Vírus , Proteínas do Capsídeo , Vacinas Sintéticas , Reatores Biológicos
2.
Front Immunol ; 15: 1330677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433834

RESUMO

Introduction: Conventional foot-and-mouth disease (FMD) vaccines have been developed to enhance their effectiveness; however, several drawbacks remain, such as slow induction of antibody titers, short-lived immune response, and local side effects at the vaccination site. Therefore, we created a novel FMD vaccine that simultaneously induces cellular and humoral immune responses using the Dectin-2 agonist, D-galacto-D-mannan, as an adjuvant. Methods: We evaluated the innate and adaptive (cellular and humoral) immune responses elicited by the novel FMD vaccine and elucidated the signaling pathway involved both in vitro and in vivo using mice and pigs, as well as immune cells derived from these animals. Results: D-galacto-D-mannan elicited early, mid-, and long-term immunity via simultaneous induction of cellular and humoral immune responses by promoting the expression of immunoregulatory molecules. D-galacto-D-mannan also enhanced the immune response and coordinated vaccine-mediated immune response by suppressing genes associated with excessive inflammatory responses, such as nuclear factor kappa B, via Sirtuin 1 expression. Conclusion: Our findings elucidated the immunological mechanisms induced by D-galacto-D-mannan, suggesting a background for the robust cellular and humoral immune responses induced by FMD vaccines containing D-galacto-D-mannan. Our study will help to facilitate the improvement of conventional FMD vaccines and the design of next-generation FMD vaccines.


Assuntos
Adjuvantes de Vacinas , Lectinas Tipo C , Vacinas Virais , Animais , Camundongos , Suínos , Imunidade Humoral , Mananas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
3.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543864

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral infection causing acute and severe vesicular lesions in cattle and pigs, which has prompted global vaccination policies. This study presents a technique for enhancing antigen yield in SAT1 BOT and SAT3 ZIM by treatment with calcium chloride (CaCl2). We tested changes in cell viability in BHK-21 suspension cells treated with varying concentrations of CaCl2. The optimal CaCl2 concentration was determined based on antigen yield. The timing of CaCl2 supplementation relative to FMD virus inoculation was tested. Finally, the optimal medium for antigen production was identified. We observed a concentration-dependent decrease in BHK-21 cell viability at >7.5 mM CaCl2. A CaCl2 concentration of 3 mM yielded the most antigens. CaCl2 supplementation relative to FMD virus infection was optimal 2 h before or with viral inoculation. CD-BHK 21 medium supplemented with CaCl2 was the most productive medium. Specifically, SAT1 BOT and SAT3 ZIM showed improved antigen production in CD-BHK 21 medium with 3 mM CaCl2, while Provero-1 and Cellvento BHK-200 media showed no significant enhancement. Overall, CaCl2 supplementation enhanced FMD antigen productivity. This study provides a useful framework for enhancing antigen production efficiently in the FMD vaccine industry.

4.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510965

RESUMO

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Inosina Pranobex , Vacinas Virais , Animais , Camundongos , Suínos , Adjuvantes de Vacinas , Anticorpos Antivirais , Adjuvantes Imunológicos , Interleucinas , Imunidade
5.
Antiviral Res ; 223: 105836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360296

RESUMO

Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.


Assuntos
Vírus da Febre Aftosa , Vacinas , Bovinos , Suínos , Animais , Camundongos , Interferon-alfa/farmacologia , Anticorpos Neutralizantes , Imunoglobulina G , Antivirais/farmacologia
6.
Vaccines (Basel) ; 12(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38400168

RESUMO

South Korea has experienced outbreaks of foot-and-mouth disease (FMD) of serotypes O and A, leading to nationwide vaccination with a bivalent vaccine. Since the FMD virus (FMDV) Asia1 group-V genotype occurred in North Korea in 2007, an Asia1/MOG/05 vaccine strain belonging to the Asia1 group-V genotype was developed using a genetic recombination method (Asia1/MOG/05-R). This study aimed to evaluate the antigen productivity and viral inactivation kinetics of Asia1/MOG/05-R to assess its commercial viability. The antigen yield of Asia1/MOG/05-R produced in flasks and bioreactors was approximately 4.0 µg/mL. Binary ethylenimine (BEI) inactivation kinetics of Asia1/MOG/05-R showed that 2 mM and 1.0 mM BEI treatment at 26 °C and 37 °C, respectively, resulted in a virus titer <10-7 TCID50/mL within 24 h, meeting the inactivation kinetics criteria. During incubation at 26 °C and 37 °C, 10% antigen loss occurred, but not due to BEI treatment. When pigs were inoculated twice with the Asia1/MOG/05-R antigen, the virus neutralization titer increased to approximately 1:1000; therefore, it can sufficiently protect against Asia1/MOG/05-R and Asia1 Shamir viruses. The Asia1/MOG/05-R will be useful as a vaccine strain for domestic antigen banks.

7.
Vaccines (Basel) ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38250877

RESUMO

Foot-and-mouth disease (FMD) vaccines are currently the most powerful protective and preventive measures used to control FMD. In this study, the chimeric vaccine strain containing antigenic epitopes from the FMD virus serotype A, which belongs to the ASIA topotype, was produced and evaluated. The chimeric vaccine strains contain sea-97/G1 (VP4, VP2, VP3) and A22 Iraq (VP1) or G-VII (VP1) for use in FMD vaccines in Asia. The 50% protective dose was determined in mice. Vaccinated mice were challenged with three different type A viruses (Sea-97/G1, Sea-97/G2, G-VII clade) seven days post-vaccination (dpv), and mice that received the vaccine candidates were protected against the three viruses. The protective capability of one of the vaccine candidates was evaluated in pigs. Vaccinated pigs were challenged with three different type A viruses (Sea-97/G1, Sea-97/G2, G-VII clade) at 28 dpv, and pigs that received the vaccine candidate were protected against the three viruses. The results showed that this vaccine candidate, which was designed to provide protection against FMD in Asia, efficiently protected pigs against virus challenge and thus has potential as a broad-spectrum vaccine for various epidemic FMD viruses.

8.
Vaccines (Basel) ; 11(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38006022

RESUMO

An inactivated whole-virus vaccine is currently used to prevent foot-and-mouth disease (FMD). Although this vaccine is effective, it offers short-term immunity that requires regular booster immunizations and has several side effects, including local reactions at the vaccination site. To address these limitations, herein, we evaluated the efficacy of bestatin as a novel small molecule adjuvant for inactivated FMD vaccines. Our findings showed that the FMD vaccine formulated with bestatin enhanced early, intermediate-, and particularly long-term immunity in experimental animals (mice) and target animals (pigs). Furthermore, cytokines (interferon (IFN)α, IFNß, IFNγ, and interleukin (IL)-29), retinoic acid-inducible gene (RIG)-I, and T-cell and B-cell core receptors (cluster of differentiation (CD)28, CD19, CD21, and CD81) markedly increased in the group that received the FMD vaccine adjuvanted with bestatin in pigs compared with the control. These results indicate the significant potential of bestatin to improve the efficacy of inactivated FMD vaccines in terms of immunomodulatory function for the simultaneous induction of potent cellular and humoral immune response and a long-lasting memory response.

9.
Front Microbiol ; 14: 1289065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029108

RESUMO

Background: Foot-and-mouth disease (FMD) is an extremely contagious viral disease that is fatal to young animals and is a major threat to the agricultural economy by reducing production and limiting the movement of livestock. The currently commercially-available FMD vaccine is prepared using an inactivated viral antigen in an oil emulsion, with aluminum hydroxide [Al(OH)3] as an adjuvant. However, oil emulsion-based options possess limitations including slow increases in antibody titers (up to levels adequate for defense against viral infection) and risks of local reactions at the vaccination site. Further, Al(OH)3 only induces a T helper 2 (Th2) cell response. Therefore, novel adjuvants that can address these limitations are urgently needed. Glycyrrhizic acid (extracted from licorice roots) is a triterpenoid saponin and has great advantages in terms of price and availability. Methods: To address the limitations of the currently used commercial FMD vaccine, we added glycyrrhizic acid as an adjuvant (immunostimulant) to the FMD bivalent (O PA2 + A YC) vaccine. We then evaluated its efficacy in promoting both innate and adaptive (cellular and humoral) immune reactions in vitro [using murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs)] and in vivo (using mice and pigs). Results: Glycyrrhizic acid has been revealed to induce an innate immune response and enhance early, mid-, and long-term immunity. The studied bivalent vaccine with glycyrrhizic acid increased the expression of immunoregulatory genes such as pattern-recognition receptors (PRRs), cytokines, transcription factors, and co-stimulatory molecules. Conclusion: Collectively, glycyrrhizic acid could have utility as a novel vaccine adjuvant that can address the limitations of commercialized FMD vaccines by inducing potent innate and adaptive immune responses.

10.
Vaccines (Basel) ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37766163

RESUMO

Foot-and-mouth disease (FMD) is a fatal contagious viral disease that affects cloven-hoofed animals and causes severe economic damage at the national level. There are seven serotypes of the causative foot-and-mouth disease virus (FMDV), and type O is responsible for serious outbreaks and shows a high incidence. Recently, the Cathay, Southeast Asia (SEA), and ME-SA (Middle East-South Asia) topotypes of type O have been found to frequently occur in Asia. Thus, it is necessary to develop candidate vaccines that afford protection against these three different topotypes. In this study, an experimental FMD vaccine was produced using a recombinant virus (TWN-JC) with the JC epitope (VP1 140-160 sequence of the O/SKR/Jincheon/2014) between amino acid 152 and 153 of VP1 in TWN-R. Immunization with this novel vaccine candidate was found to effectively protect mice against challenge with the three different topotype viruses. Neutralizing antibody titers were considerably higher after a second vaccination. The serological differences between the topotype strains were identified in guinea pigs and swine. In conclusion, a significant serological difference was observed at 56 days post-vaccination between animals that received the TWN-JC vaccine candidate and those that received the positive control virus (TWN-R). The TWN-JC vaccine candidate induced IFNγ and IL-12B.

11.
Virus Res ; 335: 199189, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37536380

RESUMO

Foot-and-mouth disease (FMD) is a rapidly propagating infectious disease of cloven-hoofed animals, especially cattle and pigs, affecting the productivity and profitability of the livestock industry. Presently, FMD is controlled and prevented using vaccines; however, conventional FMD vaccines have several disadvantages, including short vaccine efficacy, low antibody titers, and safety issues in pigs, indicating the need for further studies. Here, we evaluated the efficacy of a novel bivalent vaccine containing zinc sulfate as an immunostimulant and FMD type O and A antigens (O PA2 and A YC, respectively) against FMD virus in mice and pigs. Zinc sulfate induced cellular immunity in murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs) by increasing IFNγ secretion. Additionally, FMD vaccine containing O PA2 and A YC antigens and zinc sulfate induced early, mid-, and long-term immune responses in mice and pigs, and enhanced cellular and humoral immunity by regulating the expression of pathogen recognition receptors (PRRs), transcription factors, co-stimulatory molecules, and cytokines in porcine PBMCs from vaccinated pigs. Overall, these results indicated that the novel immunostimulant zinc sulfate induced potent cellular and humoral immune responses by stimulating antigen-presenting cells (APCs) and T and B cells, and enhanced long-term immunity by promoting the expression of co-stimulatory molecules. These outcomes suggest that zinc sulfate could be used as a novel vaccine immunostimulant for difficult-to-control viral diseases, such as African swine fever (ASF) or COVID-19.


Assuntos
Febre Suína Africana , COVID-19 , Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Camundongos , Animais , Suínos , Bovinos , Imunidade Humoral , Sulfato de Zinco , Leucócitos Mononucleares , Anticorpos Antivirais , Adjuvantes Imunológicos
12.
Vaccines (Basel) ; 11(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37514972

RESUMO

Foot-and-mouth disease (FMD) is a highly infectious disease affecting cloven-hoofed animals and causes significant economic losses to the livestock industry. The Type O PanAsia-2 (O PA-2) vaccine strain is protective against a wide range of serotype O FMD virus (FMDV) strains in East Asia, and A22 Iraq/24/64 (A22 IRQ) is the most widely used vaccine strain in FMD vaccine antigen banks. The aim of this study was to produce antigens from O PA-2 and A22 IRQ viruses using a 100 L bioreactor and evaluate the protective efficacy of varying antigen concentrations in pigs. More than 2 µg/mL of the antigen was recovered from the O PA-2 and A22 IRQ virus-infected supernatants. Further, inactivation of O PA-2 and A22 IRQ by binary ethyleneimine revealed that the viral titers decreased below 10-7 TCID50/mL within 13 h and 9 h, respectively. The O PA-2 and A22 IRQ vaccines, containing 10 µg and 5 µg of antigen, respectively, provided protection against homologous viruses in pigs. This is the first report demonstrating that the antigens obtained from the pilot-scale production of O PA-2 and A22 IRQ are viable candidate vaccines. These results will pave the way for industrial-scale FMD vaccine production in South Korea.

13.
Front Bioeng Biotechnol ; 11: 1192291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476482

RESUMO

Human embryonic kidney (HEK) 293 cells are widely used in protein and viral vector production owing to their high transfection efficiency, rapid growth, and suspension growth capability. Given their antiviral, anticancer, and immune-enhancing effects, type I interferons (IFNs) have been used to prevent and treat human and animal diseases. However, the binding of type I IFNs to the IFN-α and-ß receptor (IFNAR) stimulates the expression of IFN-stimulated genes (ISGs). This phenomenon induces an antiviral state and promotes apoptosis in cells, thereby impeding protein or viral vector production. In this study, we generated an IFNAR subtype 1 knockout (KO) HEK 293 suspension (IFNAR-KO) cell line by using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) technology. Upon treatment with human IFN-α, the IFNAR-KO cells showed a constant expression of ISGs, including 2'-5'-oligoadenylate synthetase 1 (OAS1), myxovirus resistance 1 (Mx1), protein kinase RNA-activated (PKR), and IFN-induced transmembrane protein 1 (IFITM1), when compared with the wild-type HEK 293 (WT) cells, wherein the ISGs were significantly upregulated. As a result, the titer of recombinant adenovirus expressing porcine IFN-α was significantly higher in the IFNAR-KO cells than in the WT cells. Furthermore, the IFNAR-KO cells continuously produced higher amounts of IFN-α protein than the WT cells. Thus, the CRISPR-Cas9-mediated IFNAR1 KO cell line can improve the production efficiency of proteins or viral vectors related to IFNs. The novel cell line may be used for producing vaccines and elucidating the type I IFN signaling pathway in cells.

14.
Pathogens ; 12(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37375450

RESUMO

Foot-and-mouth disease (FMD) vaccines must be produced in a biosafety level 3 facility, so the FMD virus (FMDV) must be completely inactivated after amplification. The inactivation kinetics of FMDV during vaccine antigen production were assessed by evaluating whether the viral titer dropped below 10-7 TCID50/mL within 24 h of binary ethyleneimine (BEI) treatment. This study dealt with four FMD vaccine candidate strains for the efficacy of BEI treatment at different concentrations and temperatures to determine the optimal inactivation condition of each virus. Two domestic isolates, O/SKR/Boeun/2017 (O BE) and A/SKR/Yeoncheon/2017 (A YC), and two recombinant viruses, PAK/44/2008 (O PA-2) and A22/Iraq/24/64 (A22 IRQ), were investigated. The O BE and A22 IRQ required 2 mM BEI at 26 °C and 0.5 mM BEI at 37 °C for complete inactivation. The O PA-2 and A YC required 2 mM BEI at 26 °C and 1 mM BEI at 37 °C. Crucially, the yield of FMD virus particles (146S) in the viral infection supernatant was higher (>4.0 µg/mL) than those previously reported; additionally, there was little antigen loss, even after 24 h of treatment with 3 mM BEI. Overall, it is considered economical to produce FMD vaccines using these four kinds of viruses; therefore, these candidate strains will be prioritized for the manufacture of FMD vaccines in South Korea.

15.
Front Immunol ; 14: 1194502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334361

RESUMO

Background: Most commercial foot-and-mouth disease (FMD) vaccines have various disadvantages, such as low antibody titers, short-lived effects, compromised host defense, and questionable safety. Objectives: To address these shortcomings, we present a novel FMD vaccine containing Dectin-1 agonist, ß-D-glucan, as an immunomodulatory adjuvant. The proposed vaccine was developed to effectively coordinate innate and adaptive immunity for potent host defense against viral infection. Methods: We demonstrated ß-D-glucan mediated innate and adaptive immune responses in mice and pigs in vitro and in vivo. The expressions of pattern recognition receptors, cytokines, transcription factors, and co-stimulatory molecules were promoted via FMD vaccine containing ß-D-glucan. Results: ß-D-glucan elicited a robust cellular immune response and early, mid-, and long-term immunity. Moreover, it exhibited potent host defense by modulating host's innate and adaptive immunity. Conclusion: Our study provides a promising approach to overcoming the limitations of conventional FMD vaccines. Based on the proposed vaccine's safety and efficacy, it represents a breakthrough among next-generation FMD vaccines.


Assuntos
Febre Aftosa , Vacinas , Animais , Camundongos , Suínos , Imunidade Adaptativa , Glucanos
16.
Front Microbiol ; 14: 1121830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250022

RESUMO

Foot-and-mouth disease (FMD) is an acute contagious infectious disease that affects cloven-hoofed animals. Although current emergency FMD vaccines only take effect 7 days after vaccination, antiviral agents, such as quercetin, which is a common flavonoid, could reduce the spread of FMD virus (FMDV) during outbreaks. We investigated the in vitro and in vivo antiviral effects of quercetin against FMDV. Analysis of viral copy numbers showed that quercetin had a dose-dependent inhibitory effect on FMDV at concentrations between 19.5 and 1,250 µM in porcine cells. In addition, we observed a quercetin-induced interferon (IFN)-α protein and interferon-stimulated gene (ISG) upregulation in swine cells. Enzyme-linked immunosorbent assay of sera revealed that quercetin induces the production of IFN-α, IFN-ß, IFN-γ, interleukin (IL)-12, and IL-15 in mice. Inoculation of mice with quercetin or a combination of quercetin with an inactivated FMD vaccine enhanced both the survival rate and neutralizing antibody titer. Therefore, we suggest the use of quercetin as a novel and effective antiviral agent for controlling FMDV infection; however, further investigation of its application in livestock is required.

17.
Vaccines (Basel) ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112726

RESUMO

Following the worst outbreak of foot-and-mouth disease (FMD), a highly contagious disease in cloven-hoofed animals caused by the FMD virus, from November 2010-April 2011, the Korean government enforced a mandatory vaccination policy. A bivalent (FMD type O and A; O + A) vaccine has been recently implemented. Although the FMD outbreak was suppressed by vaccination, the intramuscular (IM) injection presents side effects. Therefore, improving FMD vaccine quality is necessary. Here, we investigated the side effects and immune efficacy of the O + A bivalent vaccine using two different routes of administration: intradermal (ID) and IM. To compare the immune efficacy of the two inoculation routes, virus neutralization titers and structural protein (antigen) levels were measured. The protective efficacy of ID vaccines was confirmed using two viruses (FMDV O/AS/SKR/2019 and A/GP/SKR/2018) isolated in the Republic of Korea. Serological analysis revealed that both animals administered by ID and IM injections exhibited equal immune efficacy. A virus challenge test in the target animal (swine) revealed no (or extremely low) clinical symptoms. Swine in the ID injected group exhibited no side effects. In conclusion, we suggest that the ID route of vaccination is an effective alternative to the existing IM route, which is associated with more frequent side effects.

18.
Vaccines (Basel) ; 11(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36992134

RESUMO

Three commercial vaccines are administered in domestic livestock farms for routine vaccination to aid for foot-and-mouth disease (FMD) control in Korea. Each vaccine contains distinct combinations of inactivated serotype O and A FMD virus (FMDV) antigens: O/Manisa + O/3039 + A/Iraq formulated in a double oil emulsion (DOE), O/Primorsky + A/Zabaikalsky formulated in a DOE, and O/Campos + A/Cruzeiro + A/2001 formulated in a single oil emulsion. Despite the recommendation for a prime-boost vaccination with the same vaccine in fattening pigs, occasional cross-inoculation is inevitable for many reasons, such as lack of compliance with vaccination guidelines, erroneous application, or change in vaccine types by suppliers. Therefore, there have been concerns that a poor immune response could be induced by cross-inoculation due to a failure to boost the immune response. In the present study, it was demonstrated by virus neutralization and ELISA tests that cross-inoculation of pigs with three commercial FMD vaccines does not hamper the immune response against the primary vaccine strains and enhances broader cross-reactivity against heterologous vaccine antigens whether they were applied or not. Therefore, it could be concluded that the cross-inoculation of FMD vaccines can be used as a regimen to strategically overcome the limitation of the antigenic spectrum induced by the original regimen.

19.
Vaccines (Basel) ; 11(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851149

RESUMO

Foot-and-mouth disease (FMD) type O includes 11 genetic topotypes. The Southeast Asia (SEA), Middle East-South Asia (ME-SA), and Cathay topotypes belong to FMD type O and occur frequently in Asia. Therefore, it is necessary to develop a potent vaccine strain with a broad antigenic coverage in order to provide complete protection against these three topotypes. In this study, an experimental vaccine was produced using chimeric vaccine strains (JC-VP1 or PA2-VP1) that contained VP4, VP2, and VP3 of the ME-SA topotype (O Manisa) and VP1 of the SEA topotype (Mya98 lineage; O/SKR/Jincheon/2014) or ME-SA topotype (PanAsia2 lineage; O/PAK/44). Mice were immunized with the experimental vaccines, and they were fully protected against the three topotypes. The neutralizing antibody titers of PA2-VP1 were significantly higher than those of JC-VP1 in the early vaccination phase in pigs. Here, we confirmed complete protection in pigs vaccinated with JC-VP1 or PA2-VP1, when challenged against the SEA (O/SKR/Jincheon/2014), ME-SA (O/SKR/Boeun/2017) and Cathay (O/Taiwan/97) topotype viruses, with moderately higher protection provided by PA2-VP1 than by JC-VP1.

20.
Vaccines (Basel) ; 12(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276669

RESUMO

To analyze the relationship between homologous and heterologous serological titers of immunized pigs and their protection statuses against FMD virus challenges, in the present study, the correlation between the virus neutralization titers at 21 and 28 dpv and the protection statuses at 28 dpv against challenge with FMD virus was analyzed using data sets comprising five different combinations of homologous or heterologous challenge experiments in pigs vaccinated with type O (n = 96), A (n = 69), and Asia 1 (n = 74). As a result, the experiments were divided into three groups (21D-1, 21D-2, and 21D-3) in the 21-dpv model and two groups (28D-1 and 28D-2) in the 28-dpv model. Each response curve of groups 21D-1 and 21D-2 in the 21-dpv model was very similar to each curve of groups 28D-1 and 28D-2 in the 28-dpv model, respectively, even though there was an exceptional extra group (21D-3) in the 21-dpv model. The average titers estimating 0.75 probability of protection ranged from 1.06 to 1.62 log10 in the 21-dpv model and from 1.26 to 1.64 log10 in the 28-dpv model. In summary, we demonstrated that the serological method is useful for predicting the homologous and heterologous protection statuses of vaccinated pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...